Three Perspectives on the Reduction of Contrast Induced Acute Kidney Injury in Invasive Cardiology

*Indications, contraindications, warnings, and instructions for use can be found in the product labeling supplied with each device. Risks may include air emboli and infection.

Distributed by GE Healthcare.

DyeVert, Osprey Medical, and Be Kind to Kidneys are trademarks of Osprey Medical, Inc. GE and the GE Monogram are trademarks of GE. 08-2021 JB04285XE/OS

of Contrast Induced Acute Kidney

Three Perspectives on the Reduction

Published by Global Business Media

Global Business Media Limited 62 The Street Ashtead Surrey KT21 1AT United Kingdom

witchboard: +44 (0)1737 850 939 ax: +44 (0)1737 851 952

Marie-Anne Brooks

Claudio Ronco

2 2021. The entire contents of this publication reprotected by copyright. Full details are vailable from the Publishers. All rights reservailable from the Publishers. priotocopying, recording or otherwise, with the prior permission of the copyright own

Contents

Contrast-Induced Acute Kidney Injury in Interventional Cardiology Federico Ronco, Claudio Ronco Diagnosis and Epidemiology of CI-AKI. Pathophysiological Mechanisms	Foreword	2
in Interventional Cardiology Federico Ronco, Claudio Ronco Diagnosis and Epidemiology of CI-AKI.	Federico Ronco and Claudio Ronco	
Diagnosis and Epidemiology of CI-AKI.	in Interventional Cardiology	3

Pharmacologic Strategies Non-Pharmacologic Strategies Evidence Regarding Different ICMs

Contrast Media Use in Cardiac Procedures: 12 How to Protect Patients and Avoid **Renal Complications**

Felipe Hernandez Hernandez, MD,

Patient Risk Assessment

Director of Interventional Cardiology, Clinica Universidad de Navarra

How Can We Identify High-Risk Patients? What Hydration Protocols Should Be Used?

Choice of CM

Measures to Reduce the Volume of CM

Reducing AKI Complications in Patients with Chronic Kidney Disease Ferrarotto L. Venuti G. La Manna A. Tamburino C.

Definitions and Diagnostic Criteria

Epidemiology and Clinical Implications

Risk Patient Stratification

Preventive Strategies for CI-AKI

Ideal Contrast Media Agent

Volume Reduction

DyeVert System

Reduction of AKI Complications

Limitations and Future Perspectives

17

Foreword

V important diagnostic and therapeutic tools in the era of significant scientific and technological advances in medicine. Contrast media (CM) is increasingly used for diagnostic and therapeutic purposes in a broad spectrum of areas such as radiology, interventional cardiology, nuclear radiology, vascular surgery, and oncology. Adverse effects of iodinated CM include nausea, vomiting, thyroid dysfunction, and hypersensitivity reactions that can potentially occur and occasionally result in severe complications1.

considered in international cardiology and nephrology guidelines as a possible complication in patients undergoing interventional procedures in the cardiac catheterisation laboratory. In the past, CI-AKI was frequently underestimated and neglected and a mild and transient elevation in serum creatinine (SCr) level was considered a minor clinical problem. However, CI-AKI has been found to be strongly associated with and healthcare costs². Furthermore, CI-AKI may not always be reversible and may progress to chronic kidney disease (CKD), potentially leading to end-stage kidney disease requiring dialysis^{3,4}.

As recently suggested, a subclinical form of CI-AKI may occur in a proportion of patients exposed Federico Ronco and Claudio Ronco to iodinated CM, which is much higher than that

edical imaging techniques have become reported using classic SCr diagnostic criteria. Thus, in healthy subjects with intact renal functional reserve, partial renal damage can occur undiagnosed as it is compensated for by the remaining nephrons. The only final effect can be a partial loss of renal mass, with a loss of renal functional reserve (RFR), while baseline glomerular filtration rate and SCr remain unchanged. However, in patients with comorbidities (e.g. CKD and diabetes mellitus) who have a decreased RFR and highly susceptible kidneys, a reduced number of functioning nephrons and an impaired ability to regenerate tubular epithelial cells indicate a Contrast-induced acute kidney injury (CI-AKI) is higher risk of developing CI-AKI even with exposure to standard volumes of CM, which is normally well tolerated in the general population with preserved functioning renal mass.

This focus reports the perspectives of three European expert groups with particular attention to a multidisciplinary approach. There is consensus that appropriate risk stratification should be performed in every patient undergoing catheterisation procedures. morbidity and mortality with increased hospital stay A thorough evaluation of risk factors together with the enforcement of adequate preventive and protective strategies may help to mitigate the risk of CI-AKI, especially in high-risk patients5.

References:

- Bottinor W, Polkampally P, Jovin I. Adverse reactions to iodinated contrast media. Int J Angiol. 2013;22:149–154. [PMC free article] [PubMed] [Google Scholar].
- ² Rudnick M, Feldman H. Contrast-induced nephropathy: What are the true clinical consequences? Clin J Am Soc Nephrol. 2008;3:263–272. [PubMed] [Google Scholar]
- ³ Maioli M, Toso A, Leoncini M, Gallopin M, Musilli N, Bellandi F. Persistent renal damage after contrast-induced acute kidney injury: incidence, evolution, risk factors, and prognosis. Circulation. 2012;125:3099-3107. [PubMed] [Google Scholar]
- Nemoto N, Iwasaki M, Nakanishi M, Araki T, Utsunomiya M, Hori M, Ikeda N, Makino K, Itaya H, Iijima R, et al. Impact of continuous deterioration of kidney function 6-8 months after percutaneous coronary intervention for acute coronary syndrome Am J Cardiol. 2014;113:1647–1651. [PubMed] [Google Scholar]
- Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019 Nov 23;394(10212):1949-1964. doi: 10.1016/S0140-6736(19)32563-2. PMID: 31777389

Contrast-Induced Acute Kidney Injury in Interventional Cardiology

Federico Ronco¹, Claudio Ronco²⁻³⁻⁴

- ¹ Interventional Cardiology, Department of Cardiac, Thoracic and Vascular Sciences, Ospedale dell'Angelo, AULSS3 Serenissima, Mestre – Venezia, Italy
- Department of Medicine, University of Padova, Padova, Italy
- International Renal Research Institute of Vicenza, Vicenza, Italy
- ⁴ Department of Nephrology, San Bortolo Hospital, Vicenza, Italy

Diagnosis and Epidemiology of Contrast-Induced Acute **Kidney Injury**

The spread of diagnostic and interventional procedures has been accompanied by increased the studied patient populations and procedures attention to the potential adverse effects of iodinated contrast media (ICM).

the past, contrast-induced acute kidney injury (CI-AKI) is a clinically relevant complication in patients undergoing diagnostic and interventional procedures (especially those in the cardiac catheterisation laboratory). CI-AKI may present with a wide variety of clinical scenarios depending on the severity of the AKI stage and comorbidities, ranging from a transient asymptomatic increase h) to severe kidney dysfunction requiring dialysis.

The epidemiology and incidence of CI-AKI vary widely in the literature. This is attributable to the different criteria of AKI used in reporting and definitions, as well as to the heterogeneity of performed in catheterisation laboratories.

The 2012 Kidney Disease Improving Global Despite the fact that the ICM used currently Outcomes (KDIGO) guidelines standardised the is more tolerable and safer than those used in definition and staging of AKI for use as diagnostic criteria in clinical trials. So far, these criteria have also been applied to CI-AKI1. They recommend the criteria adopted by the Acute Kidney Injury Network (AKIN), which has updated the RIFLE criteria, to define AKI as an increase in SCr > 0.3 mg/dl (26.5 umol/l) or as an increase in SCr > 50% over baseline values within 48 h from ICM administration². However, new AKI in serum creatinine (SCr) (>0.3 mg/dl within 48 biomarkers have been recently proposed to allow for a more accurate and timely diagnosis³⁻⁶.

The 2012 Kidney Disease Improving Global Outcomes (KDIGO) guidelines standardised the definition and staging of AKI for use as diagnostic criteria in clinical trials

New ADQI Classification

Functional criteria	Stage	Damage criteria
No change or sCr level increase <0.3 mg/dL and no UO criteria	15	Biomarker positive
Increase of sCr level by ≥0.3 mg/dL	1A	Biomarker negative
for ≤48 h or ≥150% for ≤7 days and/or UO <0.5 mL/kg/h for >6 h	1B	Biomarker positive
Increase of sCr level by >200%	2A	Biomarker negative
and/or UO <0.5 mL/kg/h for >12 h	2B	Biomarker positive
Increase of sCr level by >300% (≥4.0 mg/dL with an acute increase of ≥0.5 mg/dL) and/or UO <0.3 mL/kg/h	3A	Biomarker negative
for >24 h or anuria for >12 h and/or acute KRT	3B	Biomarker positive

Figure 1 - Proposed new definition of AKI from the Acute Dialysis Quality Initiative (ADQI)13 with permission. (SCr = serum creatinine; UO = urine output; KRT = kidney replacement therapy)

WWW.HOSPITALREPORTS.ORG | 3 2 | WWW.HOSPITALREPORTS.ORG

CI-AKI physiopathology
is complex and likely
multifactorial. Three main
mechanisms seem to
be responsible:
-Direct cytotoxic
effect of ICM on renal
tubular cells
-Damage attributable
to ROS

-Hemodynamic hypoxia

In particular, early stress and injury biomarkers such as N-GAL or cell cycle arrest biomarkers such as Nephrocheck (product of IGFBP-7 and TIMP-2) have been used to make an early diagnosis of AKI, implement preventive and protective measures⁷⁻¹⁰, evaluate subclinical ICM toxicity¹¹⁻¹², and generate a new AKI classification¹³ (Figure 1).

In the near future, this new classification and AKI biomarkers will likely be used as endpoints for research and trials in the field of CI-AKI.

CI-AKI is an important cause of AKI in hospitalised patients (10%), together with ischaemic septic and toxic causes¹⁴. CI-AKI at any stage correlates with poor middle-and long-term outcomes (mortality and MARCE -major adverse cardiovascular and renal events-) and is associated with a poor outcome in catheterisation laboratories procedures. In particular, it increases the risk of ischaemia recurrence, rate of target vessel revascularisation in percutaneous coronary interventions, and bleeding complications¹⁵⁻¹⁷. Furthermore, CI-AKI leads to a significant economic burden on hospitals, increasing hospital and ICU length of stay, and management of complications.

The incidence of CI-AKI in patients with cardiovascular disease could be partially overestimated due to concomitant causes or exposures other than ICM¹⁸. A correct diagnosis of CI-AKI would require ruling out other causes of AKI. Unfortunately, current diagnostic criteria do not allow distinguishing between a causative effect of ICM (CI-AKI) and a simple association (contrast-associated acute kidney injury), where ICM is just one of many other risk modifiers¹⁹. Finally, the diagnosis of subclinical AKI (stage 1 S) may be completely overlooked unless a careful biomarker-driven evaluation is performed. This new entity in the continuum of AKI should be considered in the future, not only for an accurate molecular diagnosis of AKI but also for epidemiological studies and interventional trials. As a practical example, a recent study²⁰ analysed CM toxicity and the impact of different CM on subclinical CI-AKI using stress and damage biomarkers as endpoints. Two different ICM protocols displayed comparable results in terms of SCr variation (clinical AKI) but significantly different incidence of biomarker increase (subclinical AKI), suggesting that the criteria to determine safety profiles of ICM should be reassessed.

Pathophysiological Mechanisms

CI-AKI physiopathology is complex and likely multifactorial, as reported in in-vitro and animal studies. Furthermore, in clinical practice, several confounding factors are present. Nevertheless, three main mechanisms seem

to be responsible for AKI in cases of ICM administration²¹, as follows:

- Direct cytotoxic effect of ICM on renal tubular cells (apoptosis, membrane protein redistribution, migration of adhesion molecules, reduction in intracellular Ca++, fragmentation of the DNA, intercellular junctional changes, altered mitochondrial function, and abnormal cellular proliferation and adaptive repair)
- Damage attributable to the formation of reactive oxygen species (ROS) (ICM causes a moderate-to-severe hypoxic condition in the tubules of the renal medulla with an increase in oxygen demand and a concomitant decrease in oxygen supply. This results in a pathological increase in the local production of ROS, which affects cellular membranes, nuclear DNA, and mitochondria. The increased level of ROS also leads to a significant vasoconstriction mediated by endothelin-I and angiotensin-II, with a reduction in circulating NO, further aggravating hypoxia.)
- Haemodynamic hypoxia (ICM has a direct biphasic effect on renal vasculature; shortlasting transient vasodilation is followed by a prolonged state of vasoconstriction that significantly reduces arterial flow).

Although all types of ICM have a direct cytotoxic effect on in-vitro cultures of renal tubules (especially high-osmolarity contrast media [HOCM] and low-osmolarity contrast media [LOCM]), the iso-osmolar contrast medium (IOCM) was found to be less toxic in cultured renal tubular cells of the rat²². Clinical studies in high-risk patients and selected conditions seem to suggest that IOCM has a a lower toxicity than LOCM, which led to the clinical recommendation of using IOCM in patients at risk¹.

Patient Risk Assessment

The identification of patients at risk for CI-AKI enables the concentration of efforts on preventive and protective strategies and better allocation of human and economic resources. Risk assessment protocols may also contribute to improving the quality of information provided to patients on the risks and benefits associated with planned procedures and the optimisation of post-procedural care. To achieve effective patient risk stratification, clinical conditions and comorbidities such as pre-existing chronic kidney disease (CKD) (CKD with estimated glomerular filtration rate [eGFR] < 60 ml/min/1.73 m²), older age, diabetes, anaemia, and reduced left ventricular ejection fraction (LVEF) should be carefully evaluated. Based on this assessment and the results of a recent consensus conference on CI-AKI in interventional cardiology²³, further evaluation should be performed on potential risk modifiers or exposures¹⁹ such as critical illness at

Patient Phenotype Clinical Presentation - Reduced LVEF - Emergency - Age - Shock - CHF - AKI from other causes - CKD - Hypovolemia - Diabetes - Nephrotoxic drugs - Anemia Procedural issues - ICM volume - ICM type - IABP - Femoral artery access Figure 2 - Risk factors for CI-AKI

presentation (shock, hypovolaemia, dehydration, and oliguria), previously diagnosed AKI/acute and chronic kidney disease, concomitant use of nephrotoxic drugs, urgency/emergency of the procedure, procedure-related issues (use of intraaortic balloon pump, dose and type of ICM, and site of arterial access) (Figure 2).

Multiple models and scores to predict the risk of CI-AKI have been developed from retrospective studies of patients who underwent coronary interventional procedures²⁴⁻²⁹. The value of such risk scores in daily clinical practice has been questioned, as most of them have not been validated in prospective studies. The presence of multiple risk modifiers or exposures increases the risk of CI-AKI exponentially, and the clinician's judgement is crucial in identifying susceptible patients in addition to any risk model prediction. Furthermore, current evidence shows that sometimes we are unaware of some risk conditions that may be present in our patients. As an example, in a case of CKD, kidney function based on eGFR is commonly evaluated, assuming that the patient's condition is stable. This assumption may not be true because hospitalised patients are subject to different pharmacological treatments and interventions that may cause a change in the actual GFR. Since eGFR is based on SCr and it may take 48 h for SCr to spike in case of a sudden GFR decline, an undiagnosed condition of AKI may be present at the time of the procedure. Furthermore, even in steady-state patients, baseline GFR or eGFR may not reflect real kidney health. Patients may have lost up to 50% of the renal mass in previous pathological events without any significant increase in SCr levels. This condition can only

be explained by the kidney glomerular stress test³⁰⁻³², which determines the presence and entity of subclinical kidney damage by measuring the renal functional reserve (RFR)³³⁻³⁵. Recent studies have demonstrated that a reduction in RFR may represent a risk factor for AKI after elective cardiac surgery³⁷. The explanation of these findings resides in an undiagnosed condition of CKD due to partial loss of nephron mass detected only by a reduction in RFR. In these conditions, while we are unaware of the initial CKD condition, patients display a significant increase in AKI risk since they are already on the slippery slope of progressive nephron loss.

Pharmacologic Strategies

Various preprocedural protocols have been proposed to mitigate the risk of CI-AKI. Fluid administration is the most widely employed, safe, and cost-effective approach. The European Society of Cardiology (ESC) guidelines recommend that all patients undergoing coronary angiography receive adequate fluid intake (class I, level of evidence: "C"). In particular, they recommend that all patients with moderate-to-severe CKD (National Kidney Foundation stages 3b and 4) receive 1 mL/kg/h of isotonic saline 12 h before the procedure and continue for 24 h afterwards (0.5 mL/kg/h if LVEF ≤ 35% or NYHA >2) if the expected contrast volume is >100 mL (class IIa, level of evidence C)³⁸.

Furthermore, several studies have shown that hydration protocols based on patients' haemodynamic parameters (central venous pressure, left ventricular end diastolic pressure, or bioelectrical impedance) are superior to standard protocols. In these studies, the volume of saline

Various preprocedural protocols have been proposed to mitigate the risk of CI-AKI.

Fluid administration is the most widely employed, safe, and cost-effective approach

4 | WWW.HOSPITALREPORTS.ORG | 5

Iodinated-contrast
mediums today are
mainly non-ionic and
have a lower degree of
osmolarity (LOCM) than
those used in the past
(HOCM). Iodixanol is the
only iso-osmolar contrast
dye available (IOCM)

The volume of ICM represents a modifiable risk factor for CI-AKI and it should be reduced as much as possible

tailored according to the patients' hydration status was greater than that in controls. This indicates that hydration protocols should be personalised as current guideline-driven standards of hydration are probably inadequate to ensure a proper degree of nephroprotection³⁹⁻⁴⁴. There is some evidence regarding the nephroprotective efficacy of forced diuresis and simultaneous euvolaemic balancing. The Renal Guard System (PLC Medical Systems, Milford, Massachusetts) allows the achievement of a high urine flow rate (≥ 450 ml/h), simultaneously balancing urine output with adequate venous fluid infusion to prevent hypovolaemia. Such a system appears to be more effective than conventional hydration regimens in preventing CI-AKI 45-47.

The antioxidant and vasodilating properties of N-acetylcysteine have introduced the rationale for its application as a pharmacologic pretreatment method to reduce the incidence of CI-AKI. The results of clinical studies, however, were conflicting⁴⁸⁻⁵⁰ until the PRESERVE trial finally reported the lack of efficacy of N-acetylcysteine in preventing CI-AKI⁵¹. In the same trial, pretreatment with sodium bicarbonate did not yield any additional benefit in the prevention of CI-AKI when compared to the administration of N-acetylcysteine, normal saline, or a placebo. In spite of these results, N-acetylcysteine is still widely used due to the absence of side effects and low cost.

The ESC 2018 guidelines recommend administration of high doses of statins (atorvastatin 80 mg; rosuvastatin 20 mg or 40 mg) prior to ICM exposure (recommendation class IIa, evidence level A)³⁸. In a meta-analysis of 124 clinical trials and a total of 28,240 patients comparing the ten most evaluated pretreatment strategies, statins were shown to be the only agent effectively able to reduce the risk of CI-AKI⁵².

Non-steroidal anti-inflammatory medications, along with angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, may enhance kidney susceptibility to damage, contributing to the worsening of renal function in cases of ICM exposure. Metformin is potentially associated with an increased risk of lactic acidosis in patients with CKD stage 3 and above due to reduced renal elimination of the molecule. Because of conflicting data, there are no recommendations to temporarily suspend these agents in the general population of patients scheduled for procedures involving

However, a special concern should arise from a completely nihilistic approach due to the negative results of randomised controlled trials. A negative trial does not mean that in a specific patient or group of patients, the intervention is

ineffective. In fact, most trials have a significant number of exclusion criteria, often leading to a trial population that hardly reflects the characteristics of patients encountered in the clinical routine. For this reason, the approach suggested by precision medicine and a personalised approach should be encouraged to manage single patients at risk of AKI.

Non-Pharmacologic Strategies

The volume of ICM represents a modifiable risk factor for CI-AKI and is one of the determinants of Mehran's risk score²⁴. It should be reduced as much as possible, particularly in patients with high AKI risk, including those with moderate-tosevere CKD38. Different studies aimed at reducing the maximum ICM dose are considered safe to prevent CI-AKI. Cigarroa proposed a formula based on pre-procedure SCr and the patient's body weight (5 mL of ICM/kg of body weight [max 300 mL]/SCr in mg/dL]) to estimate the safe ICM dose53. More recently, the ratio of ICM/creatinineclearance (CICr) < 3.7 has proven to be a cut-off threshold with good sensitivity and specificity in detecting patients at risk of developing CI-AKI²⁵. A lower threshold (ICM/CICr <2.7) has been proposed for patients undergoing transcatheter aortic valve implantation, considering the greater frailty of this patient population⁵⁴. The analysis of data from the National Cardiovascular Data Registry of 1.3 million subjects showed great variability in the volume of ICM utilised by different operators during various procedures This variability was not related to the complexity of the procedures. Furthermore, there seemed to be no tendency to reduce the volume of ICM in patients at a greater risk of CI-AKI55. These findings highlight the need for continuous education for operators involved in diagnostic and interventional procedures, in order to create alertness and awareness of the importance of minimising the volumes of ICM in all conditions and even more in high-risk patients.

The DyeVert device (Osprey Medical Inc., Minnesota, USA) was developed to perform assisted injection of ICM in the coronary arteries (Figure 3). The intent is to reduce any useless volume of ICM administered during the procedure, particularly the backflow of ICM from the coronary ostia in the ascending aorta, while maintaining adequate quality of angiographic images. Various studies have demonstrated the efficacy of this device in reducing the amount of ICM administered while preserving angiographic image quality^{56,57}. These findings have been confirmed in a recent randomised study in which the device allowed a significant reduction in ICM volume from 15.5% in the general population to 46% in patients with complex multivessel percutaneous coronary intervention

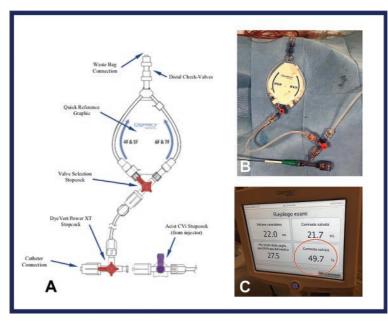


Figure 3 - A: DyeVert Power XT System for automated injectors. B: DyeVert device

(PCI) procedures. Despite the demonstrated reduction in the volume of ICM administered. no significant differences in CI-AKI were observed in this trial (CI-AKI incidence: 27% vs. 26.6%: p = 0.70)⁵⁸. A recent multicentre. single-arm, observational study of 114 patients undergoing coronary angiography, including PCI procedures with the most recent version of this device (DyeVert Plus System), confirmed ICM volume reduction clinically while maintaining image quality. No device-related adverse events have been reported⁵⁹. Briguori et al. found a significant reduction in the ICM dose in patients undergoing coronary interventions for acute coronary syndrome (ACS) using the DyeVert System. Acute kidney injury occurred in 7/90 patients (8%) in the DyeVert group and in 17/90 (19%) patients in the control group (odds ratio = 0.37; 95% confidence interval 0.14-0.95; p = .047), suggesting that the ICM volume reduction obtained by the DyeVert system is an effective strategy to prevent AKI in ACS patients undergoing invasive procedure⁶⁰. While evaluating negative trials, we should focus on the criteria

clinical parameters and changes in SCr levels. According to our previous observation, biomarker studies should be conducted to refine our evaluation of the efficacy of this device and other methods as preventive/protective strategies for the kidney.

Evidence Regarding Different ICMs

The safety and tolerance of the various ICM agents are a matter of constant debate in the attempt to identify the class of agents (LOCM or IOCM) with lower nephrotoxic effects.

lodinated-contrast mediums today are mainly non-ionic and have a lower degree of osmolarity (LOCM) than those used in the past (HOCM). Iodixanol is the only IOCM available with osmolarity analogous to that of blood (280–295 mOsm/kg H₂O), while LOCM agents still present an osmolarity double or triple that of blood (521–915 mOsm/kg H₂O).

effective strategy to prevent AKI in ACS patients Anumber of randomised clinical trials comparing undergoing invasive procedure⁶⁰. While evaluating the incidence of CI-AKI in patients exposed to EOCM or IOCM reported a lower incidence to evaluate kidney toxicity, which are based on

The DyeVert device was developed to perform assisted injection of ICM in the coronary arteries.

The intent is to reduce any useless volume of ICM administered during the procedure, particularly the backflow of ICM from the coronary ostia in the ascending aorta, while maintaining adequate quality of angiographic images

Considering the higher safety gradient in favour of the IOCM, international KDIGO guidelines, and the Italian SIN/SIAARTI guidelines, recommend the use of IOCM in patients at high risk of CI-AKI

6 | WWW.HOSPITALREPORTS.ORG

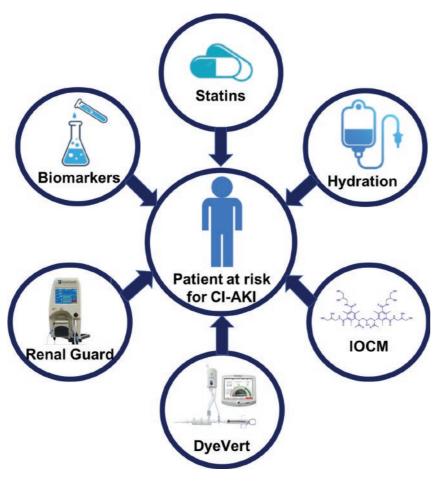


Figure 4 - Strategies to reduce the risk of CI-AKI in interventional cardiology

Several trials, however, found no significant recommendation, the GISE qualifies this differences in the incidence of CI-AKI between LOCM and IOCM⁶⁵⁷¹. No randomised risk patients^{38,23} clinical trial has ever found a better safety cardiology. Some meta-analyses comparing others reported no significant difference⁷⁴⁻⁷⁸. while the ESC does not make such a history: primum non nocere!

view, suggesting the use of IOCM in high-

In conclusion, there is a growing interest in profile of LOCM vs. IOCM in terms of defining and safely implementing appropriate the incidence of CI-AKI in interventional preventive strategies to minimise the risk of CI-AKI in patients undergoing diagnostic and the nephrotoxicity of IOCM and LOCM concluded interventional procedures (Figure 4). Scientific that IOCM has a better safety profile^{72,73}, while research, technological innovation, and continuous education of healthcare professionals Considering the higher safety gradient in aim to improve patient safety and procedural favour of the IOCM, international KDIGO outcomes. Finally, efforts should be made to quidelines, and the Italian SIN/SIAARTI quidelines, optimise resources and procedures, possibly recommend the use of IOCM in patients at reducing the economic burden due to CI-AKI high risk of CI-AKI⁷⁹⁻⁸¹. In the field of cardiology, on healthcare systems and on patients' clinical

A number of randomised clinical trials comparing the incidence of CI-AKI in patients exposed to LOCM or IOCM reported a lower incidence of CI-AKI in patients who received IOCM

DveVert, Osprev Medical, are trademarks of Osprev Medical, Inc. RenalGuard Therapy, RenalGuard Solutions and the RenalGuard Logo are trademarks of CardioRenal Systems, Inc.

Bibliography:

- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3:1-150.
- Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.
- 3 Ostermann M, McCullough PA, Forni LG, Bagshaw SM, Joannidis M, Shi J, Kashani K, Honore PM, Chawla LS, Kellum JA; all SAPPHIRE Investigators. Kinetics of urinary cell cycle arrest markers for acute kidney injury following exposure to potential renal insults. Crit Care Med. 2018;46:375-383.
- 4 de Geus HR, Ronco C, Haase M, Jacob L, Lewington A, Vincent JL. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage. J Thorac Cardiovasc Surg. 2016;151:1476-1481.
- 5 Guzzi LM, Bergler T, Binnall B, Engelman DT, Forni L, Germain MJ, Gluck E, Göcze I, Joannidis M, Kovner JL, Reddy VS, Rimmelé T, Ronco C, Textoris J. Zarbock A, Kellum JA. Clinical use of [TIMP-2] • [IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care. 2019;23:1-9.
- ⁶ Ronco C. Acute kidney injury: from clinical to molecular diagnosis. Crit Care. 2016;20:201.
- 7 Clerico A, Galli C, Fortunato A, Ronco C. Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences. Clin Chem Lab Med. 2012;50:1505-1517.
- ⁸ Albert C, Zapf A, Haase M, Röver C, Pickering JW, Albert A, Bellomo R, Breidthardt T, Camou F, Chen Z, Chocron S, Cruz D, de Geus HRH, Devarajan P, Di Somma S, Doi K, Endre ZH, Garcia-Alvarez M, Hjortrup PB, Hur M, Karaolanis G, Kavalci C, Kim H, Lentini P, Liebetrau C, Lipcsey M, Mårtensson J, Müller C, Nanas S, Nickolas TL, Pipili C, Ronco C, Rosa-Diez GJ, Ralib A, Soto K, Braun-Dullaeus RC, Heinz J, Haase-Fielitz A. Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis. Am J Kidney Dis. 2020 1;76:826-841.
- 9 Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551-1561.
- ¹⁰ Koyner JL, Zarbock A, Basu RK, Ronco C. The impact of biomarkers of acute kidney injury on individual patient care. Nephrol Dial Transplant. 2020;35:
- 11 Ronco C, Stacul F, McCullough PA. Subclinical acute kidney injury (AKI) due to iodine-based contrast media. Eur Radiol. 2013;23:319-23.
- 12 Koyner JL. Subclinical Acute Kidney Injury Is Acute Kidney Injury and Should Not Be Ignored. Am J Respir Crit Care Med. 2020 Sep 15;202(6):786-787.
- 13 Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, Bell M, Forni L, Guzzi L, Joannidis M, Kane-Gill SL, Legrand M, Mehta R, Murray PT, Pickkers P, Plebani M, Prowle J, Ricci Z, Rimmelé T, Rosner M, Shaw AD, Kellum JA, Ronco C. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw Open. 2020;3:e2019209.
- ¹⁴ Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 2002;39:930-936.
- 15 Lindsay J, Apple S, Pinnow EE, Gevorkian N, Gruberg L, Satler LF, Pichard AD, Kent KM, Suddath W, Waksman R. Percutaneous coronary interventionassociated nephropathy foreshadows increased risk of late adverse events in patients with normal baseline serum creatinine. Catheter Cardiovasc Interv. 2003;59:338-343.
- 16 Giacoppo D, Madhavan MV, Baber U, Warren J, Bansilal S, Witzenbichler B, Dangas GD, Kirtane AJ, Xu K, Kornowski R, Brener SJ, Généreux P, Stone GW, Mehran R. Impact of contrast-induced acute kidney injury after percutaneous coronary intervention on short-and long-term outcomes: pooled analysis from the HORIZONS-AMI and ACUITY trials. Circ Cardiovasc Interv. 2015;8:e002475.
- 17 Piffaretti G, Mariscalco G, Bonardelli S, Sarcina A, Gelpi G, Bellosta R, De Lucia M, Nodari F, Cervi E, Carrafiello G, Antona C, Castelli P. Predictors and outcomes of acute kidney injury after thoracic aortic endograft repair. J Vasc Surg. 2012;56:1527-1534.
- 18 Caspi O, Habib M, Cohen Y, Kerner A, Roguin A, Abergel E, Boulos M, Kapeliovich MR, Beyar R, Nikolsky E, Aronson D. Acute kidney injury after primary angioplasty: is contrast-induced nephropathy the culprit? J Am Heart Assoc. 2017;6:e005715.
- ¹⁹ Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019;394:1949-1964
- ²⁰ Breglia A, Godi I, Virzì GM, Guglielmetti G, Iannucci G, De Cal M, Brocca A, Carta M, Giavarina D, Ankawi G, Passannante A, Yun X, Biolo G, Ronco C. Subclinical contrast-induced acute kidney injury in patients undergoing cerebral computed tomography. Cardiorenal Med. 2020;10:125-136.
- ²¹ Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int 2005;68:14-22.
- ²² Jensen H, Doughty RW, Grant D, Myhre O. The effects of the iodinated X-ray contrast media iodixanol, iohexol, iopromide, and ioversol on the rat kidney epithelial cell line NRK 52-E. Ren Fail. 2011;33:426-433.
- 23 Ronco F, Azzalini L, Briquori C, Cosmai L, D'Amico M, Di Luca M, Esposito G, Granatelli A, Maddestra N, De Marco F, La Manna A, Maioli M, Musumeci G, Tarantino F, Venturelli C, Brunori G, Tarantini G. Documento di consenso SICI-GISE/SIN: Danno renale acuto da mezzo di contrasto in cardiologia interventistica [SICI-GISE/SIN Consensus document: Contrast-induced acute kidney injury in interventional cardiology]. G Ital Cardiol (Rome). 2019;20(9 Suppl 1):29S-43S.
- ²⁴ Mehran R, Aymong ED, Nikolsky E, Lasic Z, lakovou I, Fahy M, Mintz GS, Lansky AJ, Moses JW, Stone GW, Leon MB, Dangas G. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44:1393-1399.
- Laskey WK, Jenkins C, Selzer F, Marroquin OC, Wilensky RL, Glaser R, Cohen HA, Holmes DR Jr; NHLBI Dynamic Registry Investigators. Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol. 2007:50:584-590.
- ²⁶ McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, Tumlin J; CIN Consensus Working Panel. Risk prediction of contrast-induced nephropathy. Am J Cardiol. 2006;98:27K-36K.
- 27 Brown JR, DeVries JT, Piper WD, Robb JF, Hearne MJ, Ver Lee PM, Kellet MA, Watkins MW, Ryan TJ, Silver MT, Ross CS, MacKenzie TA, O'Connor GT, Malenka DJ; Northern New England Cardiovascular Disease Study Group. Serious renal dysfunction after percutaneous coronary interventions can be predicted. Am
- ²⁸ Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol 2013;61:2242-2248.
- ²⁹ Capodanno D, Ministeri M, Dipasqua F, Dalessandro V, Cumbo S, Gargiulo G, Tamburino C. Risk prediction of contrast-induced nephropathy by ACEF score in patients undergoing coronary catheterization. J Cardiovasc Med (Hagerstown). 2016;17:524-529.
- 30 Ronco C, Chawla LS. Glomerular and tubular kidney stress test: new tools for a deeper evaluation of kidney function. Nephron. 2016;134:191-194.
- 31 Ronco C, Bellomo R, Kellum J. Understanding renal functional reserve. Intensive Care Med. 2017;43:917-920.
- Elevario Barrari F, Sharma A, Hinna Danesi T, Bezerra P, Lopez-Giacoman S, Samoni S, de Cal M, Corradi V, Virzì GM, De Rosa S, Muciño Bermejo MJ, Estremadoyro C, Villa G, Zaragoza JJ, Caprara C, Brocca A, Birk HW, Walmrath HD, Seeger W, Nalesso F, Zanella M, Brendolan A, Giavarina D, Salvador L, Bellomo R, Rosner MH, Kellum JA, Ronco C. Persistent decrease of renal functional reserve in patients after cardiac surgery-associated acute kidney injury despite clinical recovery. Nephrol Dial Transplant, 2019:34:308-317.
- 33 Chawla LS, Ronco C. Renal Stress Testing in the Assessment of Kidney Disease. Kidney Int Rep. 2016 May 5;1(1):57-63.
- ³⁴ Ronco C, Nyman U. Contrast-enhanced CT in patients with kidney disease: some considerations in response to the ACR/NKF consensus. Kidney Med.

WWW.HOSPITALREPORTS.ORG | 9 8 | WWW.HOSPITALREPORTS.ORG

- 35 Sharma A, Mucino MJ, Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephron Clin Pract. 2014;127:94-100.
- Ronco C, Nyman U. Intravenous iodine contrast media in patients with kidney disease: some considerations to the American College of Radiology and National Kidney Foundation Consensus. Radiology. 2020;296:E126.
- ³⁷ Husain-Syed F, Ferrari F, Sharma A, Danesi TH, Bezerra P, Lopez-Giacoman S, Samoni S, de Cal M, Corradi V, Virzì GM, De Rosa S, Muciño Bermejo MJ, Estremadoyro C, Villa G, Zaragoza JJ, Caprara C, Brocca A, Birk HW, Walmrath HD, Seeger W, Nalesso F, Zanella M, Brendolan A, Giavarina D, Salvador L, Bellomo R, Rosner MH, Kellum JA, Ronco C. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg. 2018;105:1094-1101.
- Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Jüni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferovic PM, Sibbing D, Stefanini GG, Windecker S, Yadav R, Zembala MO; ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87-165. Erratum in: Eur Heart J. 2019;40:3096.
- Bader BD, Berger ED, Heede MB, Silberbaur I, Duda S, Risler T, Erley CM. What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clin Nephrol. 2004;62:1-7.
- Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, Marsch S, Roskamm H. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162:329-336.
- ⁴¹ Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, Dua A, Short L, Kane K. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383:1814-1823.
- ⁴² Qian G, Fu Z, Guo J, Cao F, Chen Y. Prevention of contrast-induced nephropathy by central venous pressure-guided fluid administration in chronic kidney disease and congestive heart failure patients. JACC Cardiovasc Interv 2016;9:89-96.
- 43 Maioli M, Toso A, Leoncini M, Musilli N, Bellandi F, Rosner MH, McCullough PA, Ronco C. Pre-procedural bioimpedance vectorial analysis of fluid status and prediction of contrast-induced acute kidney injury. J Am Coll Cardiol. 2014;63:1387-1394.
- ⁴⁴ Maioli M, Toso A, Leoncini M, Musilli N, Grippo G, Ronco C, McCullough PA, Bellandi F. Bioimpedance-guided hydration for the prevention of contrast-induced kidney injury: the HYDRA study. J Am Coll Cardiol. 2018;71:2880-2889.
- 45 Briguori C, Visconti G, Focaccio A, Airoldi F, Valgimigli M, Sangiorgi GM, Golia B, Ricciardelli B, Condorelli G; REMEDIAL II Investigators. Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II): RenalGuard System in high-risk patients for contrast-induced acute kidney injury. Circulation. 2011;124:1260-1269.
- ⁴⁶ Briguori C, Visconti G, Donahue M, De Micco F, Focaccio A, Golia B, Signoriello G, Ciardiello C, Donnarumma E, Condorelli G. RenalGuard system in high-risk patients for contrast-induced acute kidney injury. Am Heart J. 2016;173:67-76.
- ⁴⁷ Barbanti M, Gulino S, Capranzano P, Immè S, Sgroi C, Tamburino C, Ohno Y, Attizzani GF, Patanè M, Sicuso R, Pilato G, Di Landro A, Todaro D, Di Simone E, Picci A, Giannetto G, Costa G, Deste W, Giannazzo D, Grasso C, Capodanno D, Tamburino C. Acute Kidney Injury With the RenalGuard System in Patients Undergoing Transcatheter Aortic Valve Replacement: The PROTECT-TAVI Trial (PROphylactic effect of furosEmide-induCed diuresis with matched isotonic intravenous hydraTion in Transcatheter Aortic Valve Implantation). JACC Cardiovasc Interv. 2015;8:1595-1604.
- ⁴⁸ Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 2000;343:180-184.
- Fishbane S, Durham JH, Marzo K, Rudnick M. N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. J Am Soc Nephrol 2004;15:251-260.
- ⁵⁰ Briguori C, Manganelli F, Scarpato P, Elia PP, Golia B, Riviezzo G, Lepore S, Librera M, Villari B, Colombo A, Ricciardelli B. Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol. 2002;40:298-303.
- Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, Conner TA, Chertow GM, Bhatt DL, Shunk K, Parikh CR, McFalls EO, Brophy M, Ferguson R, Wu H, Androsenko M, Myles J, Kaufman J, Palevsky PM; PRESERVE Trial Group. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378:603-614.
- Giacoppo D, Gargiulo G, Buccheri S, Aruta P, Byrne RA, Cassese S, Dangas G, Kastrati A, Mehran R, Tamburino C, Capodanno D. Preventive strategies for contrast-induced acute kidney injury in patients undergoing percutaneous coronary procedures: evidence from a hierarchical bayesian network meta-analysis of 124 trials and 28 240 patients. Circ Cardiovasc Interv. 2017;10:e004383.
- ⁵³ Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med 1989;86:649-652
- Yamamoto M, Hayashida K, Mouillet G, Chevalier B, Meguro K, Watanabe Y, Dubois-Rande JL, Morice MC, Lefèvre T, Teiger E. Renal function-based contrast dosing predicts acute kidney injury following transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2013;6:479-486.
- ⁵⁵ Amin AP, Bach RG, Caruso ML, Kennedy KF, Spertus JA. Association of variation in contrast volume with acute kidney injury in patients undergoing percutaneous coronary intervention. JAMA Cardiol 2017;2:1007-1012
- Kaye DM, Stub D, Mak V, Doan T, Duffy SJ. Reducing iodinated contrast volume by manipulating injection pressure during coronary angiography. Catheter Cardiovasc Interv 2014;83:741-745.
- Frasad A, Ortiz-Lopez C, Kaye DM, Byrne M, Nanayakkara S, Ahmed SH, Bailey SR, Mehran R, Sethi S, Banerjee A, Eng M. The use of the AVERT system to limit contrast volume administration during peripheral angiography and intervention. Catheter Cardiovasc Interv. 2015;86:1228-1233.
- Mehran R, Faggioni M, Chandrasekhar J, Angiolillo DJ, Bertolet B, Jobe RL, Al-Joundi B, Brar S, Dangas G, Batchelor W, Prasad A, Gurm HS, Tumlin J, Stone GW. Effect of a contrast modulation system on contrast media use and the rate of acute kidney injury after coronary angiography. JACC Cardiovasc Interv.
- Gurm HS, Mavromatis K, Bertolet B, Kereiakes DJ, Amin AP, Shah AP, Hanzel GS, Rao S, Thomas JL, Kumar G. Minimizing radiographic contrast administration during coronary angiography using a novel contrast reduction system: A multicenter observational study of the DyeVert plus contrast reduction system. Catheter Cardiovasc Interv. 2019;93:1228-1235.
- ⁶⁰ Briguori C, Golino M, Porchetta N, Scarpelli M, De Micco F, Rubino C, Focaccio A, Signoriello G. Impact of a contrast media volume control device on acute kidney injury rate in patients with acute coronary syndrome. Catheter Cardiovasc Interv. 2020 Jul 18. doi: 10.1002/ccd.29136. Epub ahead of print.
- Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ; Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar and Low-Osmolar Non-Ionic Contrast Media Study Investigators. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 2003;348:491-499.
- ⁶² Jo SH, Youn TJ, Koo BK, Park JS, Kang HJ, Cho YS, Chung WY, Joo GW, Chae IH, Choi DJ, Oh BH, Lee MM, Park YB, Kim HS. Renal toxicity evaluation and comparison between visipaque (iodixanol) and hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol. 2006;48:924-930.
- Nie B, Cheng WJ, Li YF, Cao Z, Yang Q, Zhao YX, Guo YH, Zhou YJ. A prospective, double-blind, randomized, controlled trial on the efficacy and cardiorenal safety of iodixanol vs. iopromide in patients with chronic kidney disease undergoing coronary angiography with or without percutaneous coronary intervention. Catheter Cardiovasc Interv. 2008;72:958-965.
- Song T, Song M, Ge Z, Li Y, Shi P, Sun M. Comparison of the nephrotoxic effects of iodixanol versus iohexol in patients with chronic heart failure undergoing coronary angiography or angioplasty. J Interv Cardiol 2017;30:281-285.
- Mehran R, Nikolsky E, Kirtane AJ, Caixeta A, Wong SC, Teirstein PS, Downey WE, Batchelor WB, Casterella PJ, Kim YH, Fahy M, Dangas GD. Ionic low-osmolar versus nonionic iso-osmolar contrast media to obviate worsening nephropathy after angioplasty in chronic renal failure patients: the ICON (Ionic versus nonionic Contrast to Obviate worsening Nephropathy after angioplasty in chronic renal failure patients) study. JACC Cardiovasc Interv. 2009;2:415-421.

- Rudnick MR, Davidson C, Laskey W, Stafford JL, Sherwin PF; VALOR Trial Investigators. Nephrotoxicity of iodixanol versus ioversol in patients with chronic kidney disease: the Visipaque Angiography/Interventions with Laboratory Outcomes in Renal Insufficiency (VALOR) Trial. Am Heart J 2008;156:776-782.
- ⁶⁷ Solomon RJ, Natarajan MK, Doucet S, Sharma SK, Staniloae CS, Katholi RE, Gelormini JL, Labinaz M, Moreyra AE; Investigators of the CARE Study. Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation. 2007;115:3189-3196.
- ⁶⁸ Xiong HL, Peng M, Jiang XJ, Dong H, Che WQ, Chen Y, Zou YB, Xu B, Yang YJ, Gao RL. Nephrotoxicity of iodixanol versus iopamidol in patients undergoing peripheral angiography with or without endovascular therapy. Int Urol Nephrol. 2018;50:1879-1886.
- ⁶⁹ Feldkamp T, Baumgart D, Elsner M, Herget-Rosenthal S, Pietruck F, Erbel R, Philipp T, Kribben A. Nephrotoxicity of iso-osmolar versus low-osmolar contrast media is equal in low risk patients. Clin Nephrol. 2006;66:322-330.
- ⁷⁰ Shin DH, Choi DJ, Youn TJ, Yoon CH, Suh JW, Kim KI, Cho YS, Cho GY, Chae IH, Kim CH. Comparison of contrast-induced nephrotoxicity of iodixanol and iopromide in patients with renal insufficiency undergoing coronary angiography. Am J Cardiol. 2011;108:189-194.
- Laskey W, Aspelin P, Davidson C, Rudnick M, Aubry P, Kumar S, Gietzen F, Wiemer M; DXV405 Study Group. Nephrotoxicity of iodixanol versus iopamidol in patients with chronic kidney disease and diabetes mellitus undergoing coronary angiographic procedures. Am Heart J. 2009;158:822-828.
- McCullough PA, Brown JR. Effects of intra-arterial and intravenous iso-osmolar contrast medium (iodixanol) on the risk of contrast-induced acute kidney injury: a meta-analysis. Cardiorenal Med 2011;1:220-234.
- Dong M, Jiao Z, Liu T, Guo F, Li G. Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials. J Nephrol 2012;25:290-301.
- Reed M, Meier P, Tamhane UU, Welch KB, Moscucci M, Gurm HS. The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv 2009;2:645-654.
- Heinrich MC, Häberle L, Müller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology 2009;250:68-86.
- ⁷⁶ Biondi-Zoccai G, Lotrionte M, Thomsen HS, Romagnoli E, D'Ascenzo F, Giordano A, Frati G. Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis. Int J Cardiol 2014;172:375-380.
- Pandya B, Chalhoub JM, Parikh V, Gaddam S, Spagnola J, El-Sayegh S, Bogin M, Kandov R, Lafferty J, Bangalore S. Contrast media use in patients with chronic kidney disease undergoing coronary angiography: A systematic review and meta-analysis of randomized trials. Int J Cardiol. 2017;228:137-144. Epub 2016 Nov 9. Erratum in: Int J Cardiol. 2017;235:205.
- Eng J, Wilson RF, Subramaniam RM, Zhang A, Suarez-Cuervo C, Turban S, Choi MJ, Sherrod C, Hutfless S, Iyoha EE, Bass EB. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164:417-424.
- Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, Kane-Gill SL, Liu KD, Prowle JR, Shaw AD, Srisawat N, Cheung M, Jadoul M, Winkelmayer WC, Kellum JA; Conference Participants. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2020;98:294-309.
- 80 Ronco C. Italian AKI guidelines: The best of the KDIGO and ADQI results. Blood Purif. 2015;40:I-III. doi: 10.1159/000439261. Epub 2015 Aug 28. PMID: 26316177.
- 81 Ronco C, Spinelli A. Linee guida alla prevenzione, diagnosi e terapia delle sindromi di danno renale acuto: versione italiana delle kdigo, integrata con le nuove evidenze e i commentari internazionali. Giornale Italiano di Nefrologia 2015; 32 ISSN 1724-5590.

10 | WWW.HOSPITALREPORTS.ORG | 11

Contrast Media Use in Cardiac Procedures: How to Protect Patients and **Avoid Renal Complications**

Felipe Hernandez Hernandez, MD, Director of Interventional Cardiology, Clinica Universidad de Navarra

C/ Marguesado de Santa Marta 1, 28027 Madrid, Spain

E-mail: felipeivus@hotmail.com

Twitter: @pipecardio

Focus on high-risk patients, hydration regimes, choice of contrast media, and measures to reduce the volume of contrast

Abbreviations

AKI: acute kidney injury

CKD: chronic kidney disease

GFR: glomerular filtration rate

CI: contrast-induced

CM: contrast media

PCI: percutaneous coronary intervention

Contrast-induced acute kidney injury is an important complication that may account for a significant number of cases of hospitalacquired renal failure and relates with adverse effects on prognosis as well as increased health care costs

Contrast-induced (CI) acute kidney injury (AKI) is an important complication when using iodinated contrast media (CM) for diagnostic and therapeutic cardiac procedures. It may account for a significant number of cases of hospital-acquired renal failure 1,2 and is associated with adverse effects on prognosis and increased health care costs

CI-AKI has been defined as the occurrence of acute renal impairment within 2-7 days of administration of iodinated CM. According to the 2018 guidelines of the Contrast Media Safety Committee of the European Society of Urogenital Radiology (ESUR), a diagnosis of CI-AKI can be established if the serum creatinine level increases by at least 0.3 mg/dL (26.5 µmol/L) or 1.5 times above baseline within 48 to 72 h of intravascular administration of a CM ⁴

The complex pathophysiology of CI-AKI involves different mechanisms, such as vasoconstriction, oxidative stress, medullary ischaemia, and the direct toxic effects of CM. The risk of AKI is also factors. Preexisting chronic kidney disease (CKD) is the strongest patient-related risk factor, with

lower levels of kidney function associated with higher degrees of risk 3,5. Other clinical factors have also been associated with the development of CI-AKI, especially the presence of diabetes mellitus, anaemia, congestive heart failure, and

The reported incidence of CI-AKI varies widely across the literature, depending on the patient population and baseline risk factors. However, the frequency of CI-AKI has decreased over the past decade⁶. This is due to a greater awareness of the problem, better risk prevention measures, and improved iodinated CM with less renal toxicity. Despite this, many cases of CI-AKI continue to occur because of the ever-increasing number of procedures requiring contrast.

It is well known that almost all patients who receive intravascular CM may have slight and transient changes in renal function, but most of them do not require treatment. However, patients with individual or multiple risk factors have an increased probability of developing disease must be considered in combination with individual risk factors

How Can We Identify High-Risk Patients?

An important consideration in evaluating patients before CM administration is that serum creatinine is an inaccurate measure of renal function, especially in elderly and female populations. In these patients, a borderline normal creatinine level may lead clinicians to overestimate renal function. The glomerular filtration rate (GFR) calculated using the Cockroft-Gault formula or the modification of diet in renal disease (MDRD) formula for adults have better accuracy and should be routinely used to estimate creatinine clearance 7

and applied clinically. Mehran et al. developed and validated a comprehensive risk prediction score, including age, haemoglobin, preexisting CKD, contrast volume, need for intra-aortic balloon counterpulsation, and other variables, in order to anticipate the rate of CI-AKI as well as the need for potential renal replacement therapy 8. This tool is not helpful before the procedure because it incorporates variables that can only be known after the case is completed in the cath-lab. The most useful parameters for preprocedural screening are eGFR and the presence of diabetes.

There is additional evidence that the risk of AKI varies with the clinical presentation and type of imaging procedure. For example, patients with ST-segment elevation myocardial infarction who undergo percutaneous coronary intervention (PCI) have a particularly high risk of CI-AKI 9,10.

As there is no specific treatment for CI-AKI, prevention is the key. Before the use of CM, all risk factors should be assessed (Table 1), indications for use of contrast should be confirmed, and risk stratification should be performed 6

intravenous injection of a crystal solution and by reducing the contact time between the CM and renal tubular epithelial cells.

The most widely recommended procedure is intravenous infusion of normal saline at a rate of 1 mL/kg/h from 12 h before to 12 h after contrast administration. Alternatively, quick infusion protocols in ambulant patients have been used with similar results

There have been numerous randomised trials. many with small samples, comparing isotonic bicarbonate solutions to intravenous saline for the prevention of CI-AKI, based on the hypothesis that urinary alkalinisation would reduce contrast-Many risk factor models have been developed induced generation of injurious oxygen free radicals. Even in the largest and highest-quality trials, there have been no differences in the rates of renal outcomes 1,6

> The Prevention of Serious Adverse Events Following Angiography (PRESERVE) study was a double-blind trial that randomly assigned 5177 high-risk patients undergoing nonemergency angiography to receive intravenous isotonic sodium bicarbonate or intravenous isotonic saline, as well as oral acetylcysteine or oral placebo, for the prevention of a primary 90-day composite endpoint comprising death, need for dialysis, or persistent impairment in kidney function 11. The trial showed no significant difference in the incidence of the primary outcome (4.4% with bicarbonate and 4.7% with saline; odds ratio, 0.93; 95% CI, 0.72 to 1.22; P = 0.62) or in the incidence of Cl-AKI, which was a secondary endpoint (9.5% with bicarbonate and 8.3% with saline; odds ratio, 1.16; 95% CI, 0.96 to 1.41; P = 0.13). Exclusion of patients undergoing emergency procedures and the low overall median volume of contrast administered (85 mL) were limitations

Because there is no specific treatment for CI-AKI, prevention is the key

Non-modifiable and modifiable risk factors for CI-AKI

Modifiable Non-modifiable Chronic kidney disease Hypotension Congestive heart failure Diabetes mellitus Nephrotoxic drugs Type of contrast Contrast volume Emergency procedure (primary PCI) Preprocedural dehydration

Table 1

What Hydration Protocols Should Be Used?

At present, perioperative hydration is considered the "gold standard" for prevention of CI-AKI. This can be achieved by increasing the amount of liquid flowing through the renal tubules with an

of this trial, but the investigators concluded that isotonic sodium bicarbonate provides no benefit relative to isotonic saline. Hence, either isotonic crystalloid solution is recommended, with guidance on the volume of fluid according to patient characteristics 3,11

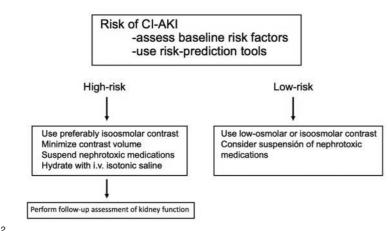


Table 2

Some studies suggest

the selection of the least-

toxic iodinated contrast

agent in the highest-risk

patients. Low-osmolar

contrast agents are

reasonable for moderate-

risk patients and

isoosmolar contrast is

indicated for the highest-

risk patients

Targeted hydration protocols have shown promising results in several studies. Adjusting infusion rates to central venous pressure or left ventricle end-diastolic pressure could result in a decrease in CI-AKI in selected patients 12,13. In addition, a strategy of controlled hydration with forced diuresis and matched saline infusion using an automated system (RenalGuard) in patients with established CKD was superior to that in the control group 14.

indicated for highest-risk patients

In patients with very high-risk profiles (eGFR <30 ml/min/1.73 m² with diabetes, heart failure, or urgent PCI for acute coronary syndrome), there is no absolutely safe limit of contrast dose. Therefore, the most reasonable approach is to maximise the benefit-to-risk balance of the procedure by performing revascularisation, followed by close monitoring and management of CI-AKI (Table 2).

Contrast-sparing strategies in cardiac interventions

- Use 5-French catheters for diagnostic and therapeutic coronary interventions
- Avoid acquiring new diagnostic images if previous angiograms are available
- Limit the volumen of contrast per injection
- Avoid test injections unless necessary
- Allow for elimination of contrast from guiding catheter by backbleeding or aspirating before entering equipment
- Use stent-enhancement techniques (ClearStent, StentBoost)
- Use increased acquisition rates (15 or 25 frames/sec) to improve image quality and to
- Use additional guidewires to create a roadmap of the target vessel and its side branches, or use dedicated software
- Extensive use of intravascular ultrasound, non-contrast optical coherence tomography, and coronary physiology testing

Table 3

Choice of CM

The European Society of Cardiology (ESC) 2018 guidelines on myocardial revascularisation, as well as the ESUR CM guidelines, recommends the use of low- or iso-osmolar contrast agents instead of high-osmolar contrast agents because they reduce the risk of CI-AKI 4,15.

Several meta-analyses and clinical studies have shown a trend but no definitive evidence that isoosmolar CM is associated with a significantly lower rate of CI-AKI than low-osmolar CM ⁶. However, some studies have suggested the selection of the least toxic iodinated contrast agent in the highest-risk patients. Low-osmolar injections and automated contrast injection contrast agents are reasonable for moderate-

Measures to Reduce the Volume of CM

Several studies have shown that contrast dose is directly related to the risk of CI-AKI 2, 6,8. Therefore, calculating the maximum acceptable contrast dose seems to be a potentially effective measure to reduce the development of CI-AKI in most patients. The ESC guidelines suggest using a contrast volume <4 mL/kg or a total contrast volume/ GFR <3.7, especially in patients with some degree of CKD 15.

Some studies comparing the use of manual devices have shown a reduction in the volume risk patients, and iso-osmolar contrast is of contrast administered when using injectors 16

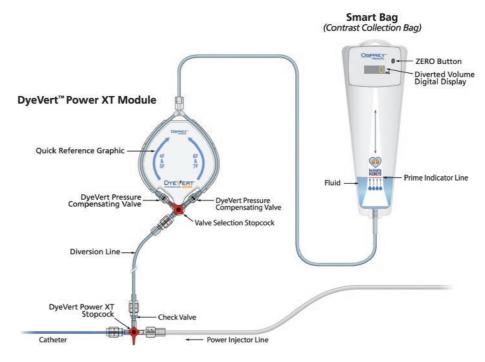


Figure 1 - DyeVert-Power-XT

These devices allow the use of smaller French catheters (5F) while maintaining the quality of the images, thus reducing the volume of CM. The use of these injectors has significantly increased in recent years. Other factors that can help reduce the volume of contrast include radial access. the use of intravascular imaging (IVUS or noncontrast OCT), physiological evaluation (fractional flow reserve and instantaneous wave free ratio), stent enhancement techniques (StentBoost, ClearStent), and increased acquisition rates (15 or 25 frames/s) to improve image quality and reduce the number of angiograms (Table 3). Avoiding left ventriculography and aortography are additional strategies commonly used to reduce the overall contrast dose

Dedicated devices have been developed to reduce the overall contrast volume. The DyeVert system (Osprey Medical, Minneapolis) is a device that allows diversion of excess contrast during injection. The fraction of CM that does not contribute to coronary opacification but gets reservoir chamber (Figure 1).

DyeVert was initially developed for manual injection (DyeVert EZ plus), while a more recent version designed for power injection (DyeVert

Power XT) is available. This was further evaluated to demonstrate that it effectively spares CM volume for the patient without reducing the image quality for the physician or increasing the risk for adverse events 17, 18. When used in conjunction with the ACIST system, the DyeVert Power XT reduced the amount of CM by 34% to 40%. This device could be an excellent alternative to decrease the incidence of CI-AKI or to avoid staged procedures in the growing number of complex procedures (multivessel and chronic total occlusion PCI, transcatheter aortic valve implantation, and left atrial appendage closure) that interventional cardiologists perform.

In conclusion, although guideline-recommended preventive measures are effective, CI-AKI remains a frequent complication of CM use during coronary angiography and cardiac interventions. Patients with CKD are at a high risk of CI-AKI and exposed to a significant burden of morbidity and mortality and therefore are linked to increased length of hospital stay and health care costs. refluxed into the aortic root is diverted into a New and creative procedural strategies, such as implementation of contrast-sparing protocols, may reduce the risk of CI-AKI in patients undergoing complex cardiac procedures and improve the outcomes of this population.

New and creative procedural strategies, like implementing contrast-sparing protocols, may reduce the risk for CI-AKI in patients undergoing complex cardiac procedures and improve the outcomes of this population

DyeVert, Osprey Medical, are trademarks of Osprey Medical, Inc. RenalGuard Therapy, RenalGuard Solutions and the RenalGuard Logo are trademarks of CardioRenal Systems, Inc

14 | WWW.HOSPITALREPORTS.ORG WWW.HOSPITALREPORTS.ORG | 15

References:

- McCullough PA, Choi JP, Feghali GA, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol 2016; 68: 1465–1473
- ² Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy: from pathophysiology to preventive strategies Can J Cardiol 2016; 32: 247-255.
- Mehran R, Dangas GD, Weisbord SD. Contrast-induced acute kidney injury. N Engl J Med 2019; 380: 2146-2155.
- ⁴ Van der Molen AJ, Reimer P, Dekkers IA, et al. Post-contrast acute kidney injury. Part 2: Risk stratification, role of hydration and other prophylactic measures, patients taking metformin, and chronic dialysis patients: recommendations for updated ESUR contrast medium safety committee guidelines. Eur Radiol 2018; 28: 2856-2869.
- 5 Tsai TT, Patel UD, Chang TI, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv 2014; 7: 1-9.
- 6 Wang Y, Liu K, Xie X, et al. Contrast-associated acute kidney injury: an update of risk factors, risk factor scores, and preventive measures Clinical Imaging 2021; 69: 354-362.
- Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in the Renal Disease Study Group. Ann Intern Med 1999; 130: 461-470.
- ⁸ Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation J Am Coll Cardiol 2004; 44: 1393-1399.
- 9 Sgura FA, Bertelli L, Monopoli D, et al. The Mehran contrast-induced nephropathy risk score predicts short- and long-term clinical outcomes in patients with ST-elevation myocardial infarction. Circ Cardiovasc Interv 2010; 3: 491-498.
- 10 Jurado Román A, Hernández Hernández F, García-Tejada J, et al. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol 2015; 115: 1174-1178.
- 11 Weisbord SD, Gallagher M, Jneid H, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 2018; 378: 603-614.
- 12 Qian G, Fu Z, Guo J, Cao F, et al. Prevention of contrast-induced nephropathy by central venous pressure-guided fluid administration in chronic kidney disease and congestive heart failure patients. JACC Cardiovasc Interv 2016; 9: 89-96.
- 13 Brar SS, Aharonian V, Mansukhani P, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: The POSEIDON randomised controlled trial. Lancet 2014; 383: 1814–1823.
- 14 Putzu A, Boscolo Berto M, Belletti A, et al. Prevention of contrast-induced acute kidney injury by furosemide with matched hydration in patients undergoing interventional procedures: A systematic review and meta-analysis of randomized trials. JACC Cardiovasc Interv 2017; 10: 355–363.
- Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2018; 76: 1585-1664.
- 16 Minsinger KD, Kassis HM, Block CA, et al. Meta-analysis of the effect of automated contrast injection devices versus manual injection and contrast volume on risk of contrast-induced nephropathy. Am J Cardiol 2014; 113: 49-53.
- 17 Bruno RR, Nia AM, Wolff G, et al. Early clinical experiences with a novel contrast volume reduction system during invasive coronary angiography. IJC Heart & Vasculature 2019: 23: 100377.
- 18 Amoroso G, Jung C, Abell C. First European experience using a novel contrast reduction system during Intervention June 2020, vol 16, supplement AC: Abstracts Book PCR e-Course 2020, p. 387. Poster Abstract No. Euro20A-POS426.

Reducing AKI Complications in **Patients with Chronic** Kidney Disease

Ferrarotto L, Venuti G, La Manna A, Tamburino C.

Definitions and Diagnostic Criteria

Contrast-induced acute kidney injury (CI-AKI) consists of an acute decline in renal function following iodinated contrast media (ICM) damage to ICM, oxygen radical-mediated injury,

requiring ICM administration, greater efforts to $(284 \pm 137 \text{ vs. } 189 \pm 90 \text{ mL}, p < 0.001).$ prevent and diagnose CI-AKI have been pursued.

Various diagnostic criteria based on contrastinduced renal impairment have been proposed to define CI-AKI

(KDIGO) proposes the following:

- serum creatinine (SCr) increase of ≥ 0.3 mg/ dL (26.5 µmol/L) within 48 h of ICM exposure
- ≥ 50% relative increase from baseline within 7 days or urinary volume < 0.5 ml/kg/h in 6 h;³ The Italian Society of Interventional Cardiology/ Italian Society of Nephrology (SICI-GISE/SIN) Consensus panel suggests the following:
- An SCr increase of ≥ 0.3 mg/dL (26.5 μmol/L) aortic valve replacement.¹⁴ or ≥ 50% relative increase from baseline within 48 h of ICM exposure.4

Epidemiology and Clinical Implications

Depending on the adopted diagnostic criteria, coronary intervention (PCI) is 3.3-10.2%5 term prognosis.^{7,8,9}

Azzalini et al. 10 investigated the incidence of

as the presence of one or more of the following characteristics: three vessels treated, three or more stents implanted, two-stent bifurcation intervention, total stent length > 60 mm, PCI of chronic total occlusions (CTOs), saphenous exposure. Three pathophysiological mechanisms vein grafts, or left main coronary artery; protected contribute to acute tubular injury: direct cytotoxic PCI; and use of rotational/laser atherectomy. This retrospective study showed no significant and ischaemic damage due to haemodynamic difference in the incidence of CI-AKI between complex and non-complex PCIs (12.1% vs. Over the years, owing to the increasing number 11.5%, p = 0.63), even though complex PCI of diagnostic and interventional procedures patients received a higher mean contrast volume

The incidence of CI-AKI was less frequent following CTO-PCIs than that following non-CTO-PCIs.¹¹ However, preexisting chronic kidney disease (CKD) plays a pivotal role in the Kidney Disease: Improving Global Outcomes development of CI-AKI after CTO-PCI and is associated with lower technical and procedural success rates.12

> Contrast-induced acute kidney injury is relatively common in patients undergoing transcatheter aortic valve implantation (TAVI), with an incidence rate of 22%, and it is associated with a poor early and late prognosis.13 However, the incidence of CI-AKI after TAVI is lower than that after surgical

In patients undergoing left atrial appendage closure, CI-AKI has an incidence of 9% considering the SICI-GISE/SIN diagnostic criteria and is associated with increased mortality (22%) compared to patients without CI-AKI (9.8%).15

Spieker et al. 16 investigated the incidence of AKI the incidence of CI-AKI following percutaneous in patients undergoing percutaneous mitral valve repair (PMVR): of over 206 subjects, 38 (18%) (10.5-18.3 % in patients with STEMI 6) and is suffered AKI after PMVR, which was associated associated with a poor short-term and long- with increased 1-month mortality and 1-year allcause mortality.

Tonchev et al. 17 obtained similar results with their CI-AKI in 2660 patients undergoing complex or retrospective analysis of data from 163 patients non-complex PCIs. They defined CI-AKI as an who underwent PMVR. The incidence of AKI was increase in post-PCI creatinine of ≥0.3 mg/dl or 29%, and in those who did not recover from AKI, ≥50% from baseline. Complex PCI was defined it was associated with increased 1-year mortality.

Over the years, owing to the increasing number of diagnostic and interventional procedures requiring ICM administration, greater efforts to prevent and diagnose CI-AKI have been pursued

WWW.HOSPITALREPORTS.ORG | 17 16 | WWW.HOSPITALREPORTS.ORG

Procedure	CI-AKI / AKI incidence	
PCIs	3,3-10,2%5	
PCIs in STEMI patients	10,5-18,3%	
Complex PCIs	12.1%10	
CTO-PCIs	9.4%11	
TAVI	22%13	
LAAC	9%15	
PMVR	18%16,17	

Table 1 - CI-AKI incidence in percutaneous cardiovascular interventions. PCI: percutaneous coronary intervention. STEMI: ST-elevated myocardial infarction. CTO: chronic total occlusions.
TAVI: trans-catheter aortic valve implantation. LAAC: left atrial appendage closure. PMVR: percutaneous mitral valve repair.

CI-AKI is associated with a worse short-term and long-term prognosis. Primary PCI, TAVI are the procedures carrying the greatest risk of CI-AKI development

Renal impairment due to ICM administration is linked to a higher probability of dialysis and hospitalisation requirement, resulting in increased public health expenditure.

CI-AKI may favour the development of CKD or, in most cases, to a transient impairment of renal function, after which complete restoration to original condition occurs. In patients with preexisting CKD (GFR ≤60 ml/min/1.73 m²), persistence of renal function impairment is pump, CHF, age >75 years, anaemia, diabetes, associated with worse prognosis than in patients who develop transient CI-AKI.18

In a retrospective study of 14,782 patients, James et al. showed that CI-AKI has a significant impact on long-term prognosis and mortality, development of CKD, and the rate of hospitalisation due to cardiovascular or renal events.19

Primary PCI, TAVI, carry the greatest risk of CI-AKI development. These results may depend on the intrinsic characteristics of the patients undergoing these procedures. TAVI and is performed in most cases, in a relatively older population with comorbidities that predispose to CI-AKI such as CKD, heart failure, and diabetes.

In patients undergoing emergency PCI due to STEMI, the higher incidence of CI-AKI may be due to haemodynamic instability.20

Risk Patient Stratification

Many risk assessment strategies have been proposed to predict the risk of developing CI-AKI. The Mehran risk score²¹ was based on risk factors such as intra-aortic balloon contrast media volume, SCr > 1.5 mg/dL or GFR <60 ml/min/1.73 m2 to predict CI-AKI occurrence according to the presence of these conditions (Table 2); Gurm et al.22 developed a risk score with 15 variables that has to be calculated using a smart device or a computer; Capodanno et al.23 proved the validity of the ACEF (age, serum creatinine, left ventricular ejection fraction) score, and the SICI-GISE/ SIN Consensus Panel suggested considering patients at risk of CI-AKI with preexisting renal insufficiency (GFR ≤60 ml/min/1.73 m²), diabetes, anaemia, age ≥75 years, heart failure, reduced ejection fraction, and haemodynamic instability.4

Risk factors	Score
Hypotension (SBP < 80 mmHg)	5
Intra-aortic balloon pump	5
Congestive heart failure (NYHA III/IV)	5
Age > 75 years	4
Anemia (Ht < 39% in men; < 36% in women)	3
Diabetes	3
Volume of injected contrast media	1 for each 100 mL
SCr > 1,5 mg/dL	4
OR eGFR < 60 ml/min/1,73 m ²	- 2 if eGFR 40-60 ml/min/1,73 m ² - 4 if eGFR 20-40 ml/min/1,73 m ² - 6 if eGFR < 20 ml/min/1,73 m ²

	Risk score	Risk of CI-AKI	Risk of dialysis
Low	≤5	7,5 %	0,04 %
Moderate	6 - 10	14 %	0,12 %
High	11- 15	26,1 %	1,09 %
Very high	≥ 15	57,3 %	12,6 %

Table 2 - Mehran risk score.21 SBP: systolic blood pressure. NYHA: New York Heart Association functional classification. Ht: hematocrit. eGFR: estimated Glomerular

Preventive Strategies for CI-AKI

Although haemodialysis and haemofiltration can remove ICM²⁴, prophylactic haemodialysis has not been shown to prevent CI-AKI or to improve renal outcome, morbidity, and mortality^{25,26} and is not recommended by the current guidelines (KDIGO3, European Renal Best Practice27, or European Society of Urogenital Radiology^{28,29}). The key to deal with CI-AKI-related complications is the prevention of CI-AKI.

CI-AKI can be prevented by administration of drugs such as statins, that can reduce the incidence of CI-AKI, and by the suspension of nephrotoxic drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs), or medications in the Renal-Guard group (27 of 348 [7.76%] that could be linked to an increased risk of developina CI-AKI.

Many authors have investigated the effects of angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) on CI-AKI incidence, but the studies carried out are heterogeneous regarding the population studied, molecules investigated, and CI-AKI definitions used. According to Kalyesubula et al.30, it is safer to withhold the therapy with ACEi or ARBs prior to angiography, given the lack of convincing renal benefit associated with continuing these medications and the presence of real possibility of harm.

Temporary discontinuation of ACEi or ARB therapy 24 h before the procedure and until the stabilisation of the renal function is recommended by the SICI-GISE/SIN Consensus panel in patients at high risk of CI-AKI.4 In addition, the panel suggested the initiation of high-dose statin therapy before the procedure, 4 in accordance with European Society of Cardiology (ESC) /EACTS Guidelines on myocardial revascularisation.31

Fluid therapy is pivotal in preventing CI-AKI. For patients with moderate-to-severe renal insufficiency, ESC Guidelines recommend (IC) administration of 1 ml/kg/h of isotonic saline solution, during the 12 h preceding ICM exposure and through the subsequent 24 h, becoming 0.5 ml/kg/h in those with left ventricular ejection fraction <35% (IIa C).31 The SICI-GISE/SIN Consensus panel suggests the same protocol in patients at risk for CI-AKI.4

There is no evidence supporting the use of N-acetylcysteine or bicarbonates to prevent CI-AKI.32,33

The Renal-Guard® system exploits "controlled forced diuresis" and is based on a technique in which a furosemide-induced increase in urinary output is immediately compensated by intravenous infusion of 0.9% NaCl to avoid dehydration. This system adjusts fluid input on urinary output, aiming to maintain adequate hydration and avoid fluid overload that could lead to pulmonary oedema.

Our centre investigated the Renal-Guard® system efficacy in 112 patients undergoing TAVI.34 In this study, the patients were randomly assigned to either RenalGuard® or standard hydration regimen. The results showed a reduced AKI incidence in the RenalGuard® group compared with the control group (n=4, 5.4% vs. n=13, 25.2%; relative risk: 0.21 [95% confidence interval [CI]: 0.06, 0.71]; p= 0.014); no cases of pulmonary oedema were reported

A meta-analysis by Putzu et al.35 included four trials, with a total population of 698 patients undergoing PCI and TAVI. The results of this metaanalysis showed a reduced incidence of CI-AKI patients) compared with the control group (75 of 350 [21.43%] patients) with a p-value < 0.00001

Ideal Contrast Media Agent

Initially, high osmolarity ionic-based ICM and high-osmolar contrast media were available, but they were poorly tolerated by patients and caused frequent adverse reactions. Currently, low-osmolar contrast media (LOCM) and isoosmolar contrast media (IOCM) are used in clinical practice. Iodixanol is the only currently available IOCM in the market.

Many authors have investigated the difference between LOCM and IOCM in terms of CI-AKI incidence, and several meta-analyses have been published on this topic. Aspelin et al.³⁶, in a multicentre, double-blind, prospective, randomised study, compared peak SCr increase in diabetic patients with CKD after the administration of iodixanol or LOCM (iohexol), with a significantly lower incidence in the first group (0.13 mg/dl vs. 0.55 mg/dl; p = 0.001).

The RECOVER study showed a lower incidence of CI-AKI in patients with GFR ≤60 mL/min randomised to the IOCM group than in those randomised to the LOCM (ioxaglate) group (7.9 vs. 17%, P = 0.021).37 Song et al. obtained similar results comparing iodixanol and iohexol in 220 patients with reduced left ventricular systolic function undergoing coronary angiography, with or without angioplasty (CI-AKI incidence: 12.7% in the iodixanol group vs. 29.1% in the iohexol group; P = 0.041).³⁸

The ICON study, in which Mehran et al. compared median peak increase of SCr in patients with renal impairment randomised to receive IOCM or LOCM (ioxaglate), showed a trend in favor of IOCM without statistically significant differences between the two groups $(0.09 \text{ mg/dl vs. } 0.15 \text{ mg/dl; } p = 0.07).^{39} \text{ The results}$ of this study may have been affected by the small sample size and low statistical power.

In the VALOR study, the authors investigated the incidence of CI-AKI in 300 patients undergoing coronary angiography using IOCM or ioversol

CI-AKI can be prevented by administration of drugs such as statins and by the suspension of nephrotoxic drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs), or medications that could be linked to an increased risk of developing CI-AKI. Fluid therapy is pivotal in preventing CI-AKI

18 | WWW.HOSPITALREPORTS.ORG WWW.HOSPITALREPORTS.ORG | 19 SICI-GISE/SIN
Consensus panel
suggested to use IOCM
in high-risk patients as
a result of its "trend"
of increased safety
compared to LOCM

(LOCM). It did not show any significant difference in CI-AKI incidence (21.8% in the iodixanol group and 23.8% in the ioversol group; P=0.78) and in SCr mean peak percentage change (MPPC), although in diabetic subjects MPPC was significantly lower in the iodixanol group (12.9% vs. 22.4% with ioversol; P=0.01).⁴⁰

In the CARE study, Solomon et al.41 compared the incidence of CI-AKI in patients with CKD undergoing coronary angiography or PCI, randomised to iodixanol or iopamidol. No significant difference in CI-AKI was observed between the two groups (6.7% iodixanol vs. 4.4% iopamidol; P=0.39).

The risk of CI-AKI may depend on the contrast administration route. Dong et al.42 investigated the incidence of CI-AKI in patients undergoing intra-arterial or intravenous administration of LOCM versus IOCM. This meta-analysis showed a significantly decreased risk of CI-AKI after intraarterial administration of IOCM compared to LOCM (risk ratio [RR] = 0.68; 95% CI, 0.50-0.92; Z=2.47; p=0.01). No difference in the incidence of CI-AKI was found in patients undergoing intravenous administration of IOCM or LOCM. McCullough et al.43 compared the association between intra-arterial (IA) and intravenous (IV) administration of IOCM or LOCM and CI-AKI. defined as an increase in serum creatinine $(SCr) \ge 0.5 \text{ mg/dL or} \ge 25\% \text{ from baseline. After}$ IA administration, the incidence of CI-AKI was significantly lower in the IOCM group (RR 0.462; 95% CI: 0.272-0.786, p = 0.004) ≥ 0.5 mg/dl definition. No statistically significant difference was found between IOCM and LOCM in the IA group using (SCr) ≥ 25% definition, although the incidence of CI-AKI was lower after IOCM administration. In the IV group, there was no significant difference in the incidence of CI-AKI using either definition.

According to these findings, iodixanol should be preferred over LOCM in IA cardiovascular procedures.

There is no strong evidence in support of using IOCM over LOCM in the general population, but in patients at high risk of CI-AKI, such as those with CKD, diabetes, or heart failure, IOCM showed better results. The SICI-GISE/SIN Consensus Panel suggested the use of IOCM in high-risk patients as a result of its "trend" of increased safety compared to LOCM.⁴

Volume Reduction

ICM volume has been reported to be a modifiable risk factor for CI-AKI and represents one of the variables of the Mehran risk score.²¹ Many authors have demonstrated that it is not the ICM volume that determines the increased risk for CI-AKI, but its adjustment for patient's weight and SCr level.

Laskey et al.⁴⁴, in a study with a population of 3179 patients, showed that ICM/CrCl (creatinine clearance) volume ratio <3.7 is a sensitive and specific cutoff for identifying patients at risk for Cl-AKI.

Gurm et al. 45 showed that an ICM dose based on CrCl with a planned ICM volume restricted to $2 \times$ CrCl and not exceeding $3 \times$ CrCl might be valuable in reducing the risk of Cl-AKI.

The ESC guidelines on myocardial revascularisation and the SICI-GISE/SIN Consensus Panel recommend minimising ICM administration in patients with moderate to severe CKD.^{31,4}

There are various additional measures that can be adopted in order to minimise ICM volume: using 5-6 Fr catheters without "side holes", limiting dye injections during fluoroscopic angiography, reducing injected dye volume to the necessary minimum to ensure correct vessel visualisation, removing the dye with the "back bleeding", and using stored images, intravascular ultrasound (IVUS) and functional stenosis evaluation.²⁰

The dynamic coronary roadmap (DCR) system can be used to reduce the administration of ICM during percutaneous coronary intervention. Yabe et al.46 compared the volume of contrast media during PCIs with or without DCR and reported a significant difference in ICM volume (118.8 \pm 49.7 mL vs. 152.1 \pm 73.0 mL, P = 0.006) between the two groups. The ongoing multi-centre, prospective, unblinded, stratified 1:1 randomised controlled trial "Dynamic Coronary Roadmap for Contrast Reduction (DCR4Contrast)" aims to assess whether using a dynamic coronary roadmap reduces the total iodinated contrast volume related to PCI compared to the control group without dynamic coronary roadmap; its results are expected by October 2021.

The automated contrast injector system (ACIST) has been proven to reduce injected ICM volume compared to manual injections although there is no evidence of its effect on the incidence of CI-AKI.^{47,48}

Various devices have been designed to optimise the amount of dye administered to the patient using an automated contrast injector system during angiographic procedures.

Duffy et al. ⁴⁹ tested the CINCOR contrast removal system (Osprey Medical, St. Paul, MN, USA), which is a dedicated tool for the removal of contrast medium from the coronary sinus. In this study, the physicians obtained adequate cannulation of the coronary sinus in 31 of the 41 patients studied, removing approximately 32.3% of the administered ICM. Further studies are needed to assess the clinical impact of removing contrast medium from the coronary sinus.

Mehran et al.⁵⁰ assessed the efficacy of the AVERT Contrast Modulation System (AVERT)

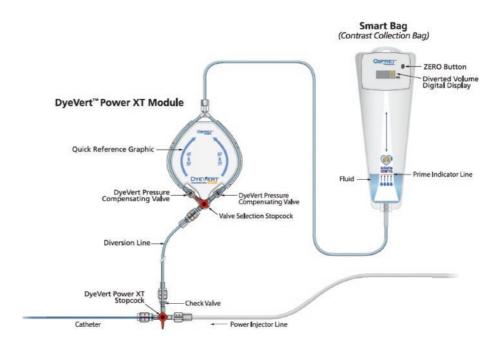


Figure 1 - DyeVert™ Power XT, compatible with automatic injectors

(Osprey Medical, MN), showing a contrast media volume (CMV) reduction of 15.5% in the general population, which rose to 46% in patients undergoing complex three-vessel PCIs. Despite these results in CMV reduction, no significant differences in CI-AKI incidence were observed with AVERT in this trial.

DyeVert System

DyeVert Power XT (Figure 1) consists of a diversion line and two catheter size-dependent (4-5 Fr and 6-7 Fr) diversion valves that respond to the contrast injection pressure and modulate the amount of contrast diverted and collected in the contrast collection bag. This device works with automatic injectors, reduces CMV, and minimises the backflow of excess dye during injections, which exposes the kidneys to the first passage effect of undiluted ICM.

Amoroso et al. 51 evaluated the novel DyeVert Power XT system in a multicentre, post-market, retrospective study involving 26 patients undergoing coronary angiography or angioplasty. The mean CMV delivered was 87.9 ± 51.5 mL (range 30.6–211.9 mL), and mean MCV saving was $34.4 \pm 6.2\%$ (range 24.1–47.0%) per procedure. Physicians characterised the image quality as acceptable in 25 cases (96%).

Briguori et al.⁵² demonstrated the efficacy of DyeVert in a single-centre retrospective study involving 451 patients with acute coronary syndrome who underwent urgent or immediate coronary angiography or angioplasty in 112 procedures supported by the DyeVert system. The authors assessed the difference in CMV administration and Cl-AKI incidence between

the two groups. CMV was higher in the control group than in the DyeVert group, with a mean percentage CMV reduction of $38 \pm 13\%$ in the DyeVert group. CI-AKI occurred in 17/90 (19%) patients in the control group and in 7/90 patients (8%) in the DyeVert group (odds ratio = 0.37; 95% CI: 0.14–0.95; p = .047).

Osprey Medical also developed the DyeVert Plus EZ (Figure 2) that allows modulation of CM during manual injection. This system is still based on the diversion of part of the injected CM through a secondary fluid pathway controlled by a pressure compensating valve. The aforementioned compensating valve provides variable resistance to CM manual injection and uniform flow suppression, which results in adequate image quality and decreased aortic reflux. This system can be used with 4-6 French diagnostic catheters and 5-7 French guide catheters. DyeVert Plus EZ can be particularly useful to CTO operators, in fact during CTO-PCIs, double injections to visualise collateral vessels are needed and these procedures are associated with high contrast volume administration.

Tajti et al.⁵³ evaluated the feasibility and efficacy of the DyeVert Plus EZ during PCls of chronic total occlusions. In this study, the DyeVert system was used in 39 of 134 CTO-PCls, and the MCV administered was 200 mL (interquartile range, 153–256 mL) in the DyeVert group and 250 mL (interquartile range, 170–303 mL) in the control group (p= 0.04).

In a multicentre, single-arm, observational study by Gurm et al.⁵⁴, the authors investigated CMV saving using DyeVert Plus in 114 patients undergoing coronary angiography with or without

DyeVert Power XT
reduces CMV and
minimizes the backflow
of exceeding dye during
injections, that exposes
kidneys to first passage
effect of undiluted ICM

There is no specific treatment for CI-AKI. and the symptomatic treatment is based on the maintenance or restoration of a correct state of hydration and

discontinuation of

nephrotoxic drugs

PCI. The mean CMV attempted was 112 \pm 85 mL (range 22-681 mL) and mean CMV administered was 67 \pm 51 mL (range 12–403 mL), resulting in 38.4-41.8; P < 0.0001) per procedure.

Reduction of AKI Complications

There is no specific treatment for CI-AKI, and the symptomatic treatment is based on the maintenance or restoration of a correct state of hydration and discontinuation of nephrotoxic drugs. Furthermore, to prevent Cl-AKI complications, it is mandatory to suspend medications that could be harmful in patients with kidney failure.

therapy. It is not metabolised, but it is cleared from the body by tubular secretion and excreted unchanged in the urine. In patients with kidney failure, it can accumulate, leading to lactic acidosis

The ESC/EACTS Guidelines on myocardial revascularisation suggest stopping antidiabetic treatment with metformin in patients with CKD before coronary angiography and checking renal function after the procedure in patients who have taken metformin, withholding it if renal function deteriorates.31

The SICI-GISE/SIN Consensus Panel does not recommend withholding metformin in patients with GFR > 30 ml/min/1.73 m²; on the other hand, an overall CMV savings of 40.1 \pm 8.8% (95% CI it recommends stopping metformin in patients with GFR ≤ 30 ml/min/1.73 m², independent of the procedure.4

Limitations and **Future Perspectives**

Although several studies have been conducted on this topic, there is no universally recognised protocol for CI-AKI prevention.

In recent years, many devices have been proposed to assist physicians in preventing CI-AKI by reducing MCV administration, Metformin is frequently used as an antidiabetic the principal modifiable risk factor. Several retrospective studies have proven the efficacy of these devices, but prospective randomised clinical trials are needed to confirm the efficacy of these devices in reducing the occurrence of CI-AKI in patients undergoing cardiovascular interventions. Meanwhile, in order to reduce the incidence of CI-AKI, it would be desirable to adopt a predetermined protocol for patients at high risk of CI-AKI and encourage the use of IOCM and dedicated devices according to the available evidence.

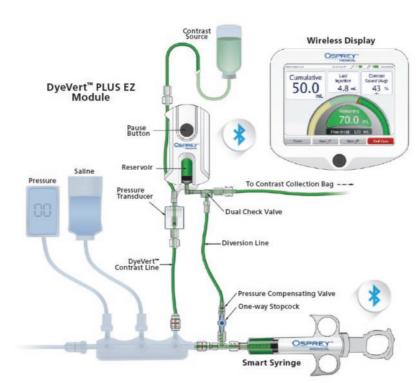


Figure 2 - DyeVert™ Plus EZ, compatible with manual injectors

DyeVert, Osprey Medical, are trademarks of Osprev Medical. Inc. RenalGuard Therapy, RenalGuard Solutions and the RenalGuard Logo are trademarks of CardioRenal Systems, Inc.

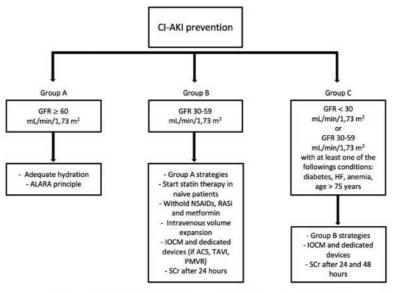


Figure 3 - Algorithm for the prevention of contrast-induced acute kidney injury. CI-AKI: contrast induced acute kindey injury. GFR: glomerular filtration rate. SCr: serum creatinine. CMV: contrast media volume ALARA: as low as reasonably achievable. NSAIDs: nonsteroidal anti-inflammatory drugs. RASi: renin-angiotensin system inhibitors IOCM: iso-osmolar contrast media. ACS: acute coronary syndromes. TAVI: transcatheter aortic valve implantation. PMVR: percutaneous mitral valve repair. HF: heart failure.

Aiming to reduce the incidence of CI-AKI, it would be desirable to adopt a predetermined protocol for patients at high risk of CI-AKI and to encourage the usage of iso-osmolar contrast media and dedicated devices according to the available evidence

References:

- Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int 2005;68:14-22.
- ² McCullough, Choi JP, Feghali GA, et al. Contrast-induced acute kidney injury. JACC 2016;68:1465–73.
- 3 Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group, KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2012: Suppl.2:1-138
- ⁴ Ronco F, Azzalini L, Briguori C, et al. Documento di consenso SICI-GISE/SIN: Danno renale acuto da mezzo di contrasto in cardiologia interventistica [SICI-GISE/SIN Consensus document: Contrast-induced acute kidney injury in interventional cardiology]. G Ital Cardiol (Rome). 2019;20(9 Suppl 1):29S-43S. doi: 10.1714/3219.31966. PMID: 31593189.
- ⁵ Jabara R, Gadesam RR, Pendyala LK, et al. Impact of the definition utilised on the rate of contrast-induced nephropathy in percutaneous coronary intervention. Am J Cardiol 2009;103:1657-62.
- ⁶ Silvain J, Nguyen LS, Spagnoli V, et al. Contrast-induced acute kidney injury and mortality in ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart 2018;104:767-72.
- Lindsay J, Apple S, Pinnow EE, et al. Percutaneous coronary intervention associated nephropathy foreshadows increased the risk of late adverse events in patients with normal baseline serum creatinine levels. Catheter Cardiovasc Interv. 2003;59:338-43
- 8 McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 1997:103:368-75.
- ⁹ James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: A systematic review and meta-analysis. Circ Cardiovasc Interv 2013;6:37-43.
- 10 Azzalini L, Poletti E, Lombardo F, et al. Risk of contrast-induced nephropathy in patients undergoing complex percutaneous coronary intervention. Int J Cardiol. 2019;290:59-63, ISSN 0167-5273, https://doi.org/10.1016/j.ijcard.2019.04.043.
- 11 Demir OM, Lombardo F, Poletti E, et al. Contrast-induced nephropathy after percutaneous coronary intervention for chronic total occlusion versus nonocclusive coronary artery disease Am J Cardiol 2018;122:1837-18.
- ¹² Azzalini L, Ojeda S, Demir OM, et al. Recanalization of chronic total occlusions in patients with vs. without chronic kidney disease: The impact of contrastinduced acute kidney injury. Can J Cardiol 2018;34:1275-82.
- 13 Gargiulo G, Sannino A, Capodanno D, et al. Impact of postoperative acute kidney injury on clinical outcomes after transcatheter aortic valve implantation:
- A meta-analysis of 5971 patients. Catheter Cardiovasc Interv 2015;86:518-27. 14 Gargiulo G, Sannino A, Capodanno D, et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement: A systematic review and meta-
- analysis. Ann Intern Med 2016;165:334-44. 15 Nombela-Franco L, Rodés-Cabau J, Cruz-Gonzalez I, et al. Incidence, predictors, and prognostic value of acute kidney injury among patients undergoing left
- atrial appendage closure JACC Cardiovasc Interv. 2018;11:1074-83.
- 16 Spieker M, Hellhammer K, Katsianos S, et al. Effect of acute kidney injury after percutaneous mitral valve repair on outcomes. Am J Cardiol. 2018;122:316-322. 17 Tonchev I, Heberman D, Peretz A, et al. Acute kidney injury after MitraClip implantation in patients with severe mitral regurgitation. Catheter Cardiovasc Interv
- 18 Maioli M, Toso A, Leoncini M, Gallopin M, Musilli N, Bellandi F. Persistent renal damage after contrast-induced acute kidney injury: incidence, evolution, risk factors, and prognosis. Circulation 2012;125:3099-107
- 19 James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: A systematic review and meta-analysis. Circ Cardiovasc Interv 2013;6:37-43.
- ²⁰ Ronco F, Tarantini G, McCullough PA. Contrast induced acute kidney injury in interventional cardiology: An update and key guidance for clinicians.

22 | WWW.HOSPITALREPORTS.ORG WWW.HOSPITALREPORTS.ORG | 23

- Rev Cardiovasc Med. 2020;21:9-23. doi: 10.31083/j.rcm.2020.01.44. PMID: 32259900.
- Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J Am Coll Cardiol 2004;44:1393-9.
- Gurm HS, Seth M, Kooiman J, et al. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol 2013;61:2242-8.
- ²³ Capodanno D, Ministeri M, Dipasqua F, et al. Risk prediction of contrast-induced nephropathy by ACEF score in patients undergoing coronary catheterization. J Cardiovasc Med (Hagerstown) 2016;17:524-9.
- ²⁴ Deray G. Dialysis and iodinated contrast media. Kidney Int. Suppl. 100 (2006) S25-9.
- Lehnert T, Keller E, Gondolf K, Schäffner T, Pavenstädt H, Schollmeyer P. Effect of hemodialysis after contrast medium administration in patients with renal insufficiency. Nephrol. Dial. Transplant. 13 (1998) 358-62.
- ²⁶ Vogt B, Ferrari P, Schönholzer C, et al. Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful. Am J Med 2001;111:692–698.
- ad-hoc working group of ERBP:, Fliser D, Laville M, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant 2012;27:4263-72.
- van der Molen AJ, Reimer P, Dekkers IA, et al. Post-contrast acute kidney injury. Part 2: Risk stratification, role of hydration and other prophylactic measures, patients taking metformin, and chronic dialysis patients: recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 2018;28:2856-69.
- ²⁹ European Society of Urogenital Radiology, Contrast-Media Guidelines 10.0, (2018) http://www.esur.org/esur-guidelines/.
- Salyesubula R, Bagasha P, Perazella MA. ACE-I/ARB therapy prior to contrast exposure: What should the clinician do? Biomed Res Int 2014;2014:423848. doi: 10.1155/2014/423848. Epub 2014 Jan 29. PMID: 24605330; PMCID: PMC3925541.
- Neumann FJ, Sousa-Uva M, Ahlsson A, et al. ESC Scientific Document Group. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 2019;40:87-165.
- Weisbord SD, Gallagher M, Jneid H, et al. PRESERVE Trial Group. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 2018;378:603-14.
- ³³ Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB. Sodium bicarbonate for the prevention of contrast-induced acute kidney injury: A systematic review and meta-analysis. Clin J Am Soc Nephrol 2009:4:1584-92.
- Barbanti M, Gulino S, Capranzano P, et al. Acute kidney injury with the renalguard system in patients undergoing transcatheter aortic valve replacement: The PROTECT-TAVI Trial (PROphylactic effect of furosEmide-induCed diuresis with matched isotonic intravenous hydraTion in transcatheter aortic valve implantation). JACC Cardiovasc Interv. 2015;8(12):1595-604. doi: 10.1016/j.jcin.2015.07.012. Epub 2015 Sep 17. PMID: 26386766.
- Putzu A, BoscoloBerto M, Belletti A, et al. Prevention of contrast-induced acute kidney injury by furosemide with matched hydration in patients undergoing interventional procedures: a systematic review and meta-analysis of randomised trials, JACC Cardiovasc. Interv. 2017;10:355-63.
- Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxicity in high-risk patients study of iso-osmolar and low-osmolar non-ionic contrast media study investigators. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 2003;348:491-9.
- ³⁷ Jo SH, Youn TJ, Koo BK, et al. Renal toxicity evaluation and comparison between Visipaque (iodixanol) and Hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomised controlled trial. J Am Coll Cardiol 2006;48:924-30.
- Song T, Song M, Ge Z, Li Y, Shi P, Sun M. Comparison of the nephrotoxic effects of iodixanol versus iohexol in patients with chronic heart failure undergoing coronary angiography or angioplasty. J Interv Cardiol 2017;30: 281-5.
- Mehran R, Nikolsky E, Kirtane AJ, et al. Ionic low-osmolar versus nonionic iso-osmolar contrast media to obviate worsening nephropathy after angioplasty in patients with chronic renal failure: the ICON (ionic versus non-ionic contrast to obviate worsening nephropathy after angioplasty in chronic renal failure patients) study. JACC Cardiovasc Interv 2009;2:415-21.
- 40 Rudnick MR, Davidson C, Laskey W, et al. Nephrotoxicity of iodixanol versus ioversol in patients with chronic kidney disease: The Visipaque Angiography/ Interventions with Laboratory Outcomes in Renal Insufficiency Trial. Am Heart J 2008;156:776-82.
- 41 Solomon RJ, Natarajan MK, Doucet S, et al. Cardiac angiography in renally impaired patients (CARE) study: a randomised double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation 2007;115:3189-96.
- ⁴² Dong M, Jiao Z, Liu T, Guo F, Li G. Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomised controlled trials. J Nephrol 2012;25(3):290-301. doi: 10.5301/jn.5000067. PMID: 22252847.
- McCullough, PA, Brown JR. Effects of intra-arterial and intravenous iso-osmolal contrast medium (iodixanol) on the risk of contrast-induced acute kidney injury: a meta-analysis. Cardiorenal Med 2011;1:220-34. doi: 10.1159/000332384. Epub 2011 Oct 4. PMID: 22164156; PMCID: PMC3222111.
- 44 Laskey WK, Jenkins C, Selzer F, et al. NHLBI Dynamic Registry Investigators. Volume-to-creatinine clearance ratio: a pharmacokinetics-based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol 2007;50:584-90.
- ⁴⁵ Gurm HS, Dixon SR, Smith DE. Renal function-based contrast dosing was used to define the safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011; 58: 907-14.
- ⁴⁶ Yabe T, Muramatsu T, Tsukahara R, et al. Impact of percutaneous coronary intervention using a novel dynamic coronary roadmap system. Heart Vessels 2020;35(3):323-30. doi: 10.1007/s00380-019-01502-1. Epub 2019 Sep 14. PMID: 31522247.
- ⁴⁷ Minsinger KD, Kassis HM, Block CA, Sidhu M, Brown JR. Meta-analysis of the effect of automated contrast injection devices versus manual injection and contrast volume on risk of contrast-induced nephropathy. Am J Cardiol 2014;113:49-53.
- contrast volume on risk of contrast-induced nephropathy. Am J Cardiol 2014;113:49-53.

 48 Gurm HS, Smith D, Share D, et al. Impact of automated contrast injector systems on contrast use and contrast-associated complications in patients
- undergoing percutaneous coronary interventions. JACC Cardiovasc Interv 2013;6:399-405.

 Duffy SJ, Ruygrok P, Juergens CP, et al. Removal of contrast media from the coronary sinus attenuates renal injury after coronary angiography and intervention.

 J Am Coll Cardiol 2010;56:525-6.
- Mehran R, Faggioni M, Chandrasekhar J, et al. Effect of contrast modulation system on contrast media use and the rate of acute kidney injury after coronary angiography JACC Cardiovasc Interv. 2018;11:1601-10.
- 51 Amoroso G et al.: First European experience using a novel contrast reduction system during coronary angiography with automated contrast injection. Euro20A-POS426 Posters-Abstracts of PCR e-courses 2020.
- 52 Briguori C, Golino M, Porchetta N, et al. Impact of a contrast media volume control device on acute kidney injury rate in patients with acute coronary syndrome. Catheter Cardiovasc Interv 2020:1-9.
- Tajti P, Xenogiannis I, Hall A, et al. Use of the DyeVert system in chronic total occlusion percutaneous coronary intervention. J Invasive Cardiol. 2019;31:253-9.
 PMID: 31478890
- Gurm HS, Mavromatis K, Bertolet B, et al. Minimising radiographic contrast administration during coronary angiography using a novel contrast reduction system: A multicenter observational study of the DyeVert plus contrast reduction system. Catheter Cardiovasc Interv 2018;1-8.

Notes:

24 | WWW.HOSPITALREPORTS.ORG | 25

Healthcare
Professionals Make
More Effective
Evidence Based
Clinical Decisions
With Hospital Reports

For the past decade, Hospital Reports has been helping healthcare professionals, within both public and private hospitals, to improve patient outcomes

Our Special Reports provide readers with an unparalleled depth of information on specialist subjects, which receive limited coverage in the mainstream medical media.

Each report is designed to help healthcare professionals to make more effective treatment decisions, by providing a unique mix of:

- Subject specific clinical information
- Insight and knowledge from internationally recognised key opinion leaders
- Clinical guidelines
- Independent data and analysis
- Unbiased editorial content

www.hospitalreports.org subscriptions@globalbusinessmedia.org www.globalbusinessmedia.org HOSPITAL REPORTS EUROPE